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INTRODUCTION

Pulse propagation and wave propagation comprise an important class

of problems in the study of the dynamics of large lattice structures.

The study of pulse and wave propagation has applications in dynamic

failure, control, and nondestructive evaluation.

In this investigation, nondispersive pulse propagation in a simple

one-dimensional lattice structure is analyzed, using both the pulse

summation method and the wave-mode coordinate method. It is shown that

the pulse summation method (a time domain method) and the wave-mode

coordinate method (a frequency domain method) give identical results,

and that both methods account for the existence of equivalent paths in

the lattice structure. Some examples of equivalent paths are given. Also,

some recommendations are made for possible extensions of the analysis

presented here.
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ANALYSIS

Lattice Definition and Problem Statement

A one-dimensional lattice structure consisting of two segments and

one joint is shown in Fig. 1. It is assumed that the joint is rigid

and massless, and that the extent of the joint in the x-direction is

small in comparison with ZI or £ 2* Segment one has elastic modulus El.

cross-sectional area A1 , and mass density p1 . Segment two has elastic

modulus E29 cross-sectional area A2 , and mass density p 2. It is assumed

that longitudinal wave propagation in each segment is governed by the

classical one-dimensional wave equation. Therefore, disturbances in

longitudinal force or longitudinal displacement propagate nondispersively

in each segment, and a longitudinal force or displacement pulse introduced

into either segment will maintain its shape as it propagates. The velocity

*J of pulse propagation in segment one is

S E,1I  (1)

and the velocity of pulse propagation in segment two is

c 2 = C(2)

The characteristic transit time required for a pulse to traverse the

length of segment one is

(3)c I

-4-



and the characteristic transit time required for a pulse to traverse the

46 length of segment two is

k 2

'2  c2 (4)

The lengths ZI and k2 are defined in Fig. 1. It is assumed here that the

characteristic transit time for segment one is equal to the characteristic

* transit time for segment two, or

TI = T2 = T (5)

The problem considered here is the following. A longitudinal force

xt) is applied to the joint as shown in Fig. 1. It is assumed that the

forcet't) is an impulse of the form

* ('t) = 0'(t) (6)

It is desired to find the resulting longitudinal force F1(t) at point 1,

the left-hand end of segment one. Note that if point 1 is a free end, then

- F1 (t) = 0, directly from the boundary condition at a free end.

Pulse Summation Solution

Using the pulse summation method described in [1], the following

* solution may be obtained for Fl(t):

F(RSR n-1 min(Ki,K 2)
Fl(t)  JO r. R0 (n) + N 1 N(KIK 2,L I)S I(KIK 29,LI)

1 n=O0 1 2 K 1  L 1=1

n min(Kl,K 2-1)
+ E E N 2 (KI,K 2,L1 )S 2(KI,K2,Lj 6(t- (2n + I)T)

i K2=1 L I =0
2= 1 

(7)
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where

KI + K =n (8)

S(n) = (r 0 r 1 )n (9)

KS K-L LI  L1  K2-L1 K2
S1(K1 ,K2,LI) = o rl t t2 r 2 3  (10)

KI  K2-i 
=

1 2
NI(KIK 2 ,LI) = (iiL ) 1) "

K K-L LI+1 L K2-L- K

S 2(KKL) = r0 rI t1 t2  r2  r3  (12)

N2 (K1 'K 2,L 1 ) L L (13)

R - R
1 R +R (14)

1 2

R - R
R2 1 (15)

R + R
1 2

2R 2  (16)
1I - RI + R 2

1 2

2R7

t2 = RI + R 2

R1 A
1  

/ (18)

R= A 2 J/ E (19)

-6-



The quantities rI and r2 are the (displacement) reflection coefficients

at the joint, and the quantities tI ant t2 are the (displacement) transmission

coefficients at the joint. The coefficient r1 is the reflection coefficient

for a pulse which arrives at the joint from segment 1, and the coefficient

r2 is the reflection coefficient for a pulse which arrives at the joint

from segment 2. The coefficient t1 is the transmission coefficient for a

pulse entering segment 1 from segment 2, and the coefficient t2 is the

* transmission coefficient for a pulse entering segment 2 from segment 1.

The quantities r0 and r3 are the (displacement) reflection coefficients at

the left-hand boundary of the lattice (point 1) and the right-hand boundary

of the lattice (point 4), respectively. The reflection coefficient r0

may be determined from the boundary conditions at point 1. If, for example,

point 1 is a fixed end, r0 = -1, and if point 1 is a free end, r0 = 1.

Similarly, the reflection coefficient r3 may be determined from the boundary

conditions at point 4.

The methods used in the derivation of eqn. (7) are discussed in detail

in [1]. Eqn. (7) is a slightly corrected form of eqn. (A90) in [1], and it

corresponds to the sum of cases I and III defined in Appendix A of [1].

Eqn. (7) consists of an infinite series of impulses which are delayed by

odd multiples of the characteristic transit time T. The quantities S, SI

and $2, which contribute to the amplitudes of the impulses, consist of

powers of the reflection and transmission coefficients. The quantities

N1 and N2 are numerical coefficients which will be discussed and interpreted

subsequently. Writing out the first few terms of eqn. (7) gives

R I

F(t) = (R1 + R2 ) (1- r O)

16(t - T)[1] + 6(t - 3T)[r 0 r1 + t1 r 3

-7--
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+ (t - 5t)V Orl + rotlt 2 r 3 + rorltlr 3 + tlr 2 r2

- 33 2 2

S(t - 0r + r 0 tlt 2 r 2 r 3 + 2r0rtlt2 r3
22 2 2 2 J

+ r 2r 2t r + r r t r r 2+ r t 2t r 2+ tr2r37
0113 0r112r3 0t12r3 tr 2r3

6(t - 9T) 4r4 + 2 3 + 22 2 +2 2 2 2

32 33 22 2 2 2 2

+ 3r0rtt 2 r3 + r 0 r3tr 3 + r 0r2tr 2r3 + 2r 0 rtt 2 r 3

+ 0r1r1t2r3r 0+12t 3  + t1 r12 11

2 342 3 3 23
[r 0rl+t2 2 r+ 2 r+2r t tr 2r + rr

011230 1
" 6(t - lT) 5 r5 + rot tr3 r4 + 2 2 t 2 2 rr3 + r2 r 2 r3.7_

132 2 3 222 43 44

+ 3r 0 rltlt 2 r 2 r 3 + 3r0 rlt2t 2 r3 + 4r0 rltt 2 r3 + r 0 rltlr 3  ,.

33 2 322 2 22 23 2 2 3

+ r0 r3tlr2 r3 + 3r0 rltlt2 r3 + r0 rltlr2r3 +4r r t t r r3

2323 34 2 24 4 1

+r t t 2r3 +r r t r + 3r t t r 2r + t r 4r
0 1 23 01 1 23 0 12 2 3 12

+ I(20)

Wave-Mode Coordinate Solution

Using the wave-mode coordinate method described in [21, the following

solution may be obtained for Fl(t):

8
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.4

R1F
1 OR 1 + R 2'

*

W (t (r 0r 1) nX((2n+l))
n=O

+ E (r0 t 2r 3t 1 (rr)mP(n+, m)A(2nr)X((2m+l)r)
n=l m=0

( = (r2r3 )mP(nm)X(2nT)X(2m))

+ Z r3 t1 (r0 t2r 3tl)n (1 0 (r0r1mP(n+,m)X(2nT)X((2-1) )n=O =

n0m0

E (r2 r3 )mP(n+l,m)X(2nT)X(2(m+l)T))
M=0

(21)

where

-(n + rn-il)'
e(n,m) (n 1 m (22)~(n -i'm!

and X(T) is a time-shift operator defined by

f(t)X(T) = f(t - T) (23) I

The quantities rl, r2 , t1 and t2 are defined by eqns. (14) through (17),

and r0 and r3 are again the reflection coefficients at the left-hand and

right-hand boundaries of the lattice, respectively.

The derivation of eqn. (21) is discussed in detail in [2]. Eqn. (21)

may be obtained by setting T I = t2  (where T and T 2 are the

-9-



characteristic transit times defined previously) in eqn. (103) of [2].

Writing out the first few terms of eqn. (21) gives

R
Fl(t) = R R2 ) (1- r0)1 _ + or1X(3r)r+

6+r3 tls(t)(T) + r0 r1 X(3t) + (r0rl) 2X(5T)

\ (T) + r2r3X(4T) + (r2r3)2X(T 1..
+(rt 2r3 tl)6(t)B(3T ) + 2r0rX(5T) + 3(r 0 r) 2 r12

(r 6r3 ) + -.•(2T) + r2r3X(4 ) + (r r (6) 2)

+r t(r t r t )(t) (3i) + 2r r (T) + 3(rr 1) (7r) +

0 3(rr)2 1

X (c) + 2r2r3X(6T) + (r 2 r3 2  (8T) +..

r+ (r 0 t 2 r 3 t 1 ) 2
6(t) (5T) + 3r 0 r X(7"r) + 6(r 0 r1) 2..2 -2

OT) + 2r2r3 X(6T) + 3(r2 r3) (8T) +...

(_V

+ r 3 tl(r0t 2 r 3 tl)26(t)L(5) + 3r0 r1 (7) + 6(r 0 rl 2(T) +

" [(6T) + 3r2r3 '(T) + 6(r2r3 )
2X(10T) +''_

(24) .
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Grouping the terms in eqn. (24) according to their time delays gives

F (t) = RI + R ( - r0)

1-

S6(t))(T)[l] + 6(t)X(3T) 0rl + r t
L 0  3 11

+ 6(t)X(5T)Er r )2 + r3tlr0rl + r3 tr 2 r3 + r0t 2r3t

0 1 3 1031 2 3 02 3rrl3 2
" 6(t)X(7T) 1 r0r1) + r3 t 1(r 2 r3) + r 3t r 0 rlr 2r 3

2
+ r3t (r0r1) + (rr0 t I)r2r3

+ 2(r t r t )r r + r t (rt rtf'

4 3 2

+ 6(t)(9T)F rr I )  + r 3 tl(r 2 r ) + r 3 tr 0 rl(r2 r3 )

L 0 r1 )3 2 330123

r3t1(r0rl)r 2r3 + r 3t 1 (r 0 r1 ) 3

2
+ r0t2r3t(r r ) + 2r t r t r rtr 2r 3

0 2 3 1 2r 0 r + 2r 3t1 0 2 1 2 3

+ 2r 0t 2r 3t 1 r t r r) + 2

+r3 t1 r0 2 r31tr0 r1 +(r 0 tr 3 t1)fI

5 4 3+ 6(t)X(11T) r 0 rl)5 + r3(r2r3 )  + r 3 t 1 r 0 r 1 (r 2 r 3 )

+ r 3 tl(r 0 r I ) (rr) + r3 t (r r rr
- 11 -



02 10+ rt r(rr ) rtrt(

2 

I+ 2r t rtrr(

+ 3r 3t1(r0 r 1) r2r3
)

+ 4r t r3 t (r r3)(I

+ 3r3t 1(r0t2r3t1)(r 2r3 )

+ 4r 3 1(r0t2r3t1)r0r1r2r3

2
+ 3r t ( (

+ 2(r 0 t2r 3 t1) 
2r 2r 3

+ 3(r 0 t2r 3 t1) 2r 0r 1

+ r3tl(rot 2r3tl)21

i 1 0

(25)I.I

*[ Comparison of Pulse Summation Solution and Wave-Mode Coordinate Solution

,* Since both eqn. (7) and eqn. (21) are expressions for the same

physical quantity Fl(t), eqns. (7) and (21) give, when expanded, identical

results. Note that if point I is a free end, then r0 = 1, and both eqns.

(7) and (21) give F (t) = 0, as required by the boundary condition at a

free end. It can be seen from eqns. (20) and (25) that the first few

- 12 -



terms of eqn. (7) are indeed identical with the corresponding terms of

eqn. (21). Note that in the pulse summation solution given by eqn. (7),

the impulses are grouped according to the time delay, whereas in the wave-

mode coordinate solution given by eqn. (21) some manipulation is necessary

before the impulses can be grouped according to the time delay.

Equivalent Paths

The numerical constants represented by the quantities N (KIK 2L I

and N2 (KI,K 2 ,L1 ) in eqn. (7) and the quantities P(n+l, m) and P(n,m) in

eqn. (21) are due to the existence of equivalent paths from the input

C location (the joint) to the output location (point 1) of the lattice in

Fig. 1. The concept of equivalent paths in one-dimensional structures
.4.

consisting of multiple segments is discussed in detail in [i]. Basically,

a path A from input location to output location is equivalent to a path

B from input location to output location if a pulse which travels along

path A arrives at the output location with the same time delay and the

same amplitude as an identical pulse which travels along path B. For

example, the four equivalent paths represented by the underlined term .J.

2 2 3.
4rrt t2 r 2r3  in eqns. (20) and (25) are shown on x-t diagrams in Fig. 2.

(The coordinate x is defined in Fig. 1.) An impulse of initial amplitude

e# arrives, after following any of the four paths shown in Fig. 2, at

0 -_

point I with a time delay of liT and an amplitude of

GR
RIR+ R2  (I - r0 )rorltlt r r3  for each of the four waves.

The pulse summation method is a time domain method which is based

upon a systematic enumeration of equivalent paths within a structure [1].

The wave-mode coordinate method, on the other hand, is a frequency domain

-13-



method which gives no explicit consideration to the existence of equivalent

* paths. The numerical constants which appear in the wave-mode coordinate

solution, and which in fact account for the existence of equivalent paths,

appear naturally in the wave-mode coordinate method as a part of the processI

* of Fourier inversion [2].

-.
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CONCLUSIONS AND RECOMThENDATIONS

In this investigation, nondispersive pulse propagation in a one-

dimensional lattice structure consisting of two segments is analyzedI

using the pulse summation method and the wave-mode coordinate method.

It is shown that the two methods give identical results, and that both

methods account for the existence of equivalent paths in the lattice

* structure.

Both the pulse summation method and the wave-mode coordinate method

may be extended to nondispersive pulse propagation in one-dimensional

lattice structures consisting of an arbitrary number of segments. Such

an extension of the pulse summation method is considered in [1l].

Using the general procedures described in [2], the extension of the

* wave-mode coordinate method to the analysis of nondispersive pulse propa-

gation in two and three-dimensional lattice structures presents no major

conceptual difficulties. The extension of the pulse summation method to

* two and three-dimensional structures seems feasible, but has not yet been

accompli.shed. The exploration of equivalent paths in two and three-

dimensional lattice structures may prove to be very interesting.

The problem of dispersive pulse propagation in lattice structures

may also be analyzed by the wave-mode coordinate method described in [2]

with no major conceptual difficulties. Computational difficulties are

expected, however, for complex structures. The extension of the pulse

summation method to dispersive pulse propagation does appear to present

major conceptual difficulties. In the dispersive problem, pulses do not

* maintain their shape as they propagate, and it is not clear how to include

the effects of dispersion into the pulse summation method.

-15-
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